

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE CODE: ECE602S	COURSE: ELECTRICAL CIRCUITS & ELECTRONICS	
SESSION: JANUARY 2019	PAPER: THEORY	
DURATION: 3 Hours	MARKS: 100	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION PAPER	
EXAMINER	Dr Munawar Karim
MODERATOR:	Mr. Vaino Indongo

INSTRUCTIONS
1. Write all your answers in the answer booklet provided
2. Read the whole question before answering
3. Begin each question on a new page.

PERMISSIBLE MATERIALS

Non-programmable scientific calculator

ATTACHMENTS

None

THIS PAPER CONSISTS OF 4 PAGES

(Including this front page)

- A band-pass filter passes a range of frequencies while blocking signals on either side of the band. Design a low-pass circuit with the 3dB point at 500Hz. Provide a circuit diagram and component values (choose values of R and C). (15)
- 2) Calculate v_o/v_i as a function of R, C and frequency f. Draw a graph of $20\log v_{out}/v_{in}$ vs $\log f$. Identify the 3dB point. (15)
- 3) Design a high-pass circuit with the 3dB point at 1000Hz. Provide a circuit diagram and. (15) component values (choose values of R and C).
- 4) Calculate v_o/v_i as a function of R, C and frequency f. Draw a graph of $20\log v_{out}/v_{in}$ vs $\log f$. Identify the 3dB point. (15)
- 5) Draw a circuit of a low- and high-pass filters to make a band-pass filter. (15)
- 6) A transistor circuit is shown below. (15)

The potentiometer is adjusted for different resistances.

(i) In the table below are recorded measured values of the base voltage U_{BE} and collector current I_C . Plot the value pairs U_{BE} and I_C in the graph.

4 10 14 Step > 11 Collector Voltage drop at Collector-emitter Collector-emitter Base-emitter resistance voitage current resistor A voltage $R_{CE} = \frac{U_{CE}}{I_{GE}}$ <u>UR</u> V Use UCE 1C mA 0 0 0 30 ø 0 0.1 30 20 0.2 0 0 30 90 D 0.3 Q 30 0.4 0 Ø 3.0 585 ø 0 0.45 M. Ű \mathcal{O} 0.50 3.0 30 0 Ó 0.55 30 34 0.60 x 1.0 2.9 0.12900 0.6 0.65 6.0 400 24 0.70 20 20 1.0 50 0.75 x 30 3.0 0 Û 0.80 30 30 O Q

(ii) At what voltage U_{BE1} does the collector-emitter path of the transistor become conductive?

- (iii) At what value UBE2 does the collector current Ic stop changing?
- (iv) Why does I_{C} not increase any further? Hint: there is a 100Ω resistor in series with the collector.
- (7) (i) Draw the graph for U_{CE} as a function of U_{BE} in the graph below, using information on the table above. (10)

- (ii) Calculate the slope of the characteristic in the middle between U_{BE1} and U_{BE2} . This is the working voltage of the transistor.
- (iii) For which base-emitter voltages is the transistor an insulator, and for which voltages is it a conductor?